Mostrando postagens com marcador estabilidade. Mostrar todas as postagens
Mostrando postagens com marcador estabilidade. Mostrar todas as postagens

10 de out. de 2013

Estabilidade dos Átomos

 
 Constituintes do núcleo do átomo e responsáveis por sua estabilidade, os nêutrons tornam-se essenciais à matéria em virtude de não apresentarem carga elétrica. Por muito tempo químicos teóricos questionaram-se a respeito da estabilidade do núcleo atômico para átomos “pesados”, isto é, que apresentam muitas partículas nucleares. A questão central é a carga positiva dos prótons, a qual faria com que os mesmos se repelissem mutuamente, o que acabaria por desintegrar o átomo. Mas não é isso o que acontece, uma vez que a matéria apresenta uma importante estabilidade atômica. Uma das teorias aceitas para tal explicação encontra-se nos nêutrons, partículas que, por não apresentarem propriedades elétricas, acabariam servindo como um isolante entre os prótons, dificultando (no caso de átomos pesados) ou mesmo impedindo (no caso de átomos leves) a sua aproximação e a consequente desintegração atômica.
Três pontos são fundamentais ao se estudar o núcleo do átomo e a sua constituição: a natureza das partículas que o constitui, a natureza das forças que mantém as suas partículas unidas e, propriamente, a estrutura nuclear. Sem nenhuma dúvida, a conhecida e muito difundida nos meios educacionais “experiência de Rutherford”, que viria a comprovar a existência do núcleo do átomo, dotada de carga elétrica positiva, marcou o inicio de uma era sem precedentes para a química e demais ciências, pois marcaria o empirismo científico como sua base. Entretanto, foi somente com a descoberta do nêutron, fato que ocorreu em 1932 por James Chadwick, que viríamos a estabelecer uma relativa compreensão sobre a constituição do núcleo do átomo, mesmo que uma década antes Rutherford já houvesse apontado para a possível existência de uma partícula constituinte do núcleo do átomo isenta de carga elétrica.
Historicamente, muitos eventos levaram à descoberta e à compreensão das propriedades do nêutron. Em 1930, Bothe e Becker constataram pela primeira vez que ao bombardear berílio com partículas alfa originadas na desintegração de elementos pesados, como o polônio, surgia uma espécie de radiação capaz de penetrar na matéria densa. Essa radiação não apresentava carga elétrica, e fora denominada de raios gama. Apenas um mais tarde, F. Joliot e sua esposa Irene Joliot-Curie, em verdade filha de Madame Curie, estudaram de modo mais afinco essas partículas, e chegaram a conclusões interessantes referentes ao seu poder de ionização e de penetração.
Chadwick viria a elucidar esse efeito: ao utilizar uma fonte de partículas alfa (emissor alfa puro), ele bombardeou uma folha de berílio que utilizou como alvo, analisando as radiações que provinham desse elemento. Para detectar tais “radiações”, ele utilizou uma câmara de ionização que foi adaptada a um sistema capaz de se deixar impregnar pelas mesmas, uma espécie de filme fotográfico. A constituição dessa radiação seria partículas de massa próxima à do próton, mas de comportamento elétrico neutro, as quais viriam a ser conhecidas como nêutrons.

25 de jan. de 2013

Camada de Valência

http://www.vestibulandoweb.com.br/quimica/teoria/diagrama-linus-pauling.jpg 
Cada uma destas camadas possuem um número máximo de elétrons. Assim, as camadas acima possuem, respectivamente 2, 8, 18, 32, 32, 18 e 2 elétrons. A camada de valência necessita, na maior parte dos átomos, de 8 elétrons para que seja estável. Essa é a teoria do octeto.
Quando não há instabilidade, os átomos tendem a fazer ligações químicas com elementos que possam proporcionar os dois elétrons faltantes.
Os gases nobres possuem 8 elétrons em sua camada de valência, a única exceção é Hélio, que possui 2 elétrons na camada de valência. Todos são estáveis, não necessitando realizar ligações químicas para adquirir estabilidade.
Como exemplo das ligações ocorridas em razão dos átomos presentes na camada de valência, estão o Oxigênio, que possui 6 elétrons na última camada e o Hidrogênio, que possui 1 elétron na ultima camada. O Oxigênio necessita de dois elétrons para ficar estável e o Hidrogênio, de dois elétrons. Desta forma, ocorre uma ligação em que dois átomos de Hidrogênio compartilham cada um, 1 elétron com o Oxigênio. Assim, o Oxigênio adquire a estabilidade através dos dois elétrons compartilhados, assim como o Hidrogênio, que adquire dois elétrons na camada de valência. Essa é a ligação que ocorre formando moléculas de água.
Outro exemplo conhecido é o cloreto de sódio ou sal de cozinha. O Cloro possui 7 elétrons na camada de valência. O Sódio, por sua vez, possui um elétron na camada de valência. Assim, o Sódio se torna um cátion, pois perde um elétron, e o Cloro se torna um ânion, pois ganha um elétron.
A representação da tabela periódica permite que, através de uma breve análise, se conclua a respeito da quantidade de eletrons da última camada. Assim, os grupos 1, 2, 13, 14, 15, 16 e 17 possuem, respectivamente, 1, 2, 3, 4, 5, 6 e 7 elétrons na última camada. Além disso, para o restante dos elementos presentes na tabela periódica, é possível identificar o número de elétrons da camada de valência através da representação da distribuição eletrônica. Assim, tem-se a respeito do elemento Ferro:
Fe: nº atômico 26
Distribuição eletrônica: 1s2 2s2 2p6 3s2 3p6 4s2 3d6
A última camada representada: 4 (4s)
Assim, o elemento Ferro possui 2 elétrons (4s2) em sua camada de valência.
Assim como o elemento Prata:
Ag: nº atômico 47
Distribuição eletrônica: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d9
A última camada representada: 5
Assim, o elemento Prata possui 2 (5s2) elétrons em sua camada de valência.
Desta forma, é possível conhecer as ligações prováveis entre os diversos elementos, assim como a sua provável transformação em cátions e ânions.


Related Posts Plugin for WordPress, Blogger...