Mostrando postagens com marcador gases nobres. Mostrar todas as postagens
Mostrando postagens com marcador gases nobres. Mostrar todas as postagens

17 de dez. de 2013

Gás Inerte

Quando um gás não reage quimicamente com outras substâncias em condições normais de temperatura e pressão (CNTP), dizemos que se trata de um gás inerte. Além de não serem reativos, os gases inertes também não provocam desequilíbrio químico.
Veja alguns exemplos de gases inertes:

Gases nobres

Também chamado de gases raros, os gases nobres são constituídos por átomos isolados uns dos outros. A principal propriedade química desses gases é a alta estabilidade, ou seja, pouca tendência de se unir (reagir) entre si ou com outros elementos químicos. A família dos gases nobres é formada por Hélio (He), Neônio (Ne), Argônio (Ar), Criptônio(Kr), Xenônio (Xe) e Radônio (Rn). Devido a esta característica, os gases nobres apresentam várias aplicações:
  • O argônio é utilizado na conservação de peças de museus e em lâmpadas incandescentes, para evitar a corrosão do filamento de tungstênio. Além disso, o argônio também é usado em soldagem, para evitar a oxidação da solda.
  • Misturado com o oxigênio, o gás hélio é usado em mergulhos de grandes profundidades, reduzindo o tempo de descompressão. Esse gás também é utilizado em dirigíveis, balões meteorológicos e de publicidade.
  • O neônio compõe detectores de íons usados em laboratórios.
  • O xenônio é usado como agente anestésico em anestesias gerais.

Gás nitrogênio (N2)

O nitrogênio é o gás presente em maior quantidade no ar atmosférico. Ele é considerado um gás inerte porque não reage com outras substâncias, salvo em condições muito especiais. É bastante utilizado na inertização de sistemas, formando uma atmosfera protetora para evitar reações de substâncias. São algumas aplicações práticas do nitrogênio nesse processo:
  • O nitrogênio é capaz de deslocar gases inflamáveis, sendo, por isso, usado em extintores de incêndio para conter a combustão.
  • Em sua forma gasosa e pressurizada, o gás é utilizado no transporte de substâncias altamente explosivas.
  • Também se utiliza o gás nitrogênio em operações de secagem, quando ocorrem reações indesejadas.
  • É aplicado, ainda, no processo de retirada de oxigênio de líquidos, evitando a contaminação dos mesmos por oxidação ou corrosão.

Dióxido de carbono (CO2)

O dióxido de carbono, mais conhecido como gás carbônico, é um gás incolor, inodoro, solúvel em água e não inflamável. Graças à sua propriedade inerte, o dióxido de carbono é largamente utilizado em extintores de incêndio para isolar o oxigênio do combustível, na inertização de tubulações para transferência de substâncias inflamáveis, na conservação de alimentos embalados, entre outras aplicações.

15 de jun. de 2013

5 Descobertas Que Desafiaram as Leis Químicas

Um dos aspectos mais interessantes da ciência é o fato de que ela é constituída pela incerteza. Tudo aquilo que é considerado uma lei da natureza só permanece como tal enquanto não houver evidências que provem sua ineficácia.
Interpretar o mundo dessa maneira permite que o meio científico realmente avance e, assim, esclareça vários dos mistérios da existência. Afinal, se considerássemos tudo o que sabemos como certo e infalível, de nada adiantaria fazer perguntas que nos levam a novos mistérios e soluções.
Neste artigo, reunimos exemplos de cinco experiências químicas que, embora parecessem impossíveis em um primeiro momento, podem ocorrer quando as condições ideias são alcançadas. Tais descobertas são só alguns exemplos de que vale a pena duvidar de ideais estabelecidas, mesmo que muitas vezes isso não agrade a opinião geral.

Gases nobres reagem com outros elementos

Uma das poucas lembranças conservadas por quem teve aulas de química no ensino médio, mas nunca se interessou muito pelo assunto, é que os gases nobres são os únicos elementos da tabela periódica que nunca reagem com outros. Isso se deve à teoria clássica das ligações químicas, que explica que reações deixam de acontecer a partir do momento em que a camada exterior dos elétrons de uma substância é preenchida.
5 descobertas que desafiaram as leis da química (Fonte da imagem: NewScientist)
Essa impossibilidade foi desmentida pelo químico britânico Neil Bartlett, da University of British Columbia, em Vancouver. Em 1961, ele observou que o hexafluoreto de platina (PtF6) era capaz de roubar elétrons do oxigênio, elemento que normalmente provoca a reação contrária — característica que inclusive originou o termo oxidação.
Ao analisar o potencial de ionização (quantidade de energia necessária para mover um elétron) do oxigênio, Batlett percebeu que ele era muito semelhante ao do xenônio, um gás nobre. Como todo bom cientista, ele decidiu misturá-lo ao hexafluoreto de platina: o resultado foi o hexafluoroplatinato de xenônio, XePtF6.
Desde então, diversas reações químicas foram realizadas usando elementos como o criptônio, algumas delas explosivamente instáveis. Situações do tipo mostram que, além de não conhecermos os gases nobres tão bem quanto imaginamos, não é recomendado acreditar em tudo que você ouve na escola.

Existem ligações entre mais de dois elementos

Outra coisa que aprendemos na escola é que o modelo clássico da química só admite reações entre dois elementos, sem que haja espaço para qualquer intruso na história. Essa teoria passou a ser questionada já na década de 1940, por pesquisadores que tentavam explicar certas reações ocorridas em moléculas orgânicas que envolviam a troca de cargas negativas entre grupos pendentes.
Caso uma dessas cargas se perdesse, o fato resultaria na criação de algo conhecido como “carbocátion”, um íon contendo um átomo de carbono com carga positiva. As leis estabelecidas até então diziam que os demais grupos pendentes deveriam se ligar à nova molécula, processo que nem sempre acontecia.
5 descobertas que desafiaram as leis da química
Para explicar a situação, alguns cientistas formularam a tese de que a carga positiva estava formando uma matriz triangular com três átomos de carbono. Essa estrutura não só possibilitava que os grupos pendentes se ligassem a vários locais diferentes, como também permitia que um dos átomos de carbono fizesse cinco ligações, em vez das quatro tradicionais.
Essa tese só pôde ser provada décadas depois, pelo cientista húngaro George Olah, que utilizou espectroscopia nuclear magnética para isolar um carbocátion — feito até então considerado impossível, devido à sua instabilidade. O trabalho não só provou que existem ligações entre três elementos, como rendeu ao pesquisador o prêmio Nobel de química em 1994.

Reações espontâneas podem acontecer em dois sentidos

A Segunda Lei da Termodinâmica afirma que toda espécie de mudança ocorrida no universo é acompanhada pelo aumento da entropia — ou seja, a desordem da existência aumenta constantemente. Assim, todas as reações químicas só trabalhariam em um único sentido, sem a possibilidade de uma volta a seu estado original.
5 descobertas que desafiaram as leis da química 
(Fonte da imagem: NewScientist)
A descoberta do cientista russo Boris Belousov mostrou que isso não era necessariamente verdade. Usando um coquetel de elementos químicos semelhantes à glicose, ele criou uma mistura que alternava entre o amarelo e o incolor de maneira constante — sinal de que a reação estava acontecendo em ambos os sentidos.
Tais oscilações são explicadas pelos compostos intermediários gerados durante o processo, capazes de acelerar suas próprias produções. Combinados a outras misturas capazes de gerar um ciclo que restaurava os componentes usados a seus estados originais, esses agentes explicam os motivos pelos quais o processo acontecia nos dois sentidos.
Eventualmente, os elementos químicos se estabilizavam conforme os compostos intermediários eram consumidos, provando que a situação só ocorre durante reações instáveis. Os fãs da Segunda Lei da Termodinâmica não precisam se preocupar — como ela só abrange reações estáveis, a descoberta não foi capaz de desacreditá-la.

Reações químicas podem acontecer em ambientes frios

A maioria das reações químicas depende de um processo que forma moléculas intermediárias com grande energia que se rearranjam em produtos com menor vigor energético. Para que isso ocorra, geralmente é preciso existir alguma espécie de aquecimento, o que impediria que houvesse qualquer espécie de combinação de elementos no espaço.
5 descobertas que desafiaram as leis da química
Na década de 1970, o químico soviético Vitali Goldanski contestou essa afirmação, provando que certas moléculas envolvidas em reações de polimerização continuavam reagindo mesmo em ambientes com temperaturas próximas a 4 Kelvin (-269° C). O cientista sugeriu que isso acontecia devido a um processo quântico denominado Efeito Túnel, que consiste em uma partícula atravessando uma região em que a energia potencial é maior do que a sua energia total.
Goldanski afirma que é isso que possibilita a ocorrência de reações químicas no espaço, talvez sendo até mesmo o responsável pela formação de moléculas construtoras da vida em grãos interestelares, a partir de ingredientes como cianeto, amônia e água. Mera curiosidade na época de seu descobrimento, o Efeito Túnel é uma das teorias mais bem estabelecidas da química atual.

Simetrias impossíveis

Quando o químico israelita Dan Shechtman afirmou ter descoberto uma forma quasicristalina de simetria atômica em certos sólidos, ele provocou reações bastante contrárias no meio científico. Um de seus principais opositores foi Linus Pauling, cientista famoso por ter chegado próximo de descobrir a estrutura do DNA (ele havia apostado em um formato de três hélices, em vez das duas realmente existentes).
A reação foi tão negativa que ele se viu impedido de continuar suas pesquisas, passando por sérias dificuldades para divulgar seu trabalho. A recompensa veio em 2011, ano em que o pesquisador recebeu um prêmio Nobel por seu trabalho.
5 descobertas que desafiaram as leis da química 
 (Fonte da imagem: NewScientist)
A descoberta ocorreu enquanto Shechtman atirava raios de elétrons em ligas metálicas e conferia os padrões resultantes de suas reflexões, o que permitia a ele conferir a forma como os átomos que constituíam os materiais se agrupavam. Entre os resultados, estava uma forma com simetria semelhante a um pentágono, cujos padrões nunca se repetiam de forma exata.
Várias outras ligas quasicristalinas foram descobertas desde então, tanto em polímeros quanto em pedaços de meteoros. Atualmente, há pesquisas que afirmam que até mesmo a água adquire essa característica quando confinada a fendas com espessura extremamente reduzida.


Fonte: http://www.tecmundo.com.br/quimica/19514-5-descobertas-que-desafiaram-as-leis-da-quimica.htm

10 de fev. de 2013

Estudo dos Gases

Com exceção dos gases nobres, que são formados por átomos isolados a maioria dos gases são compostos moleculares. Fisicamente, os gases possuem grande capacidade de compressão e expansão, não possuindo nem forma nem volume definidos, pois ocupam o volume a forma do recipiente que os contém.

Há uma diferença entre gás e vapor: o vapor é capaz de existir em equilíbrio com a substância em estado líquido e até mesmo sólido; o gás, por sua vez, é um estado fluido impossível de se liquefazer. 

TemperaturaÉ a medida da agitação das partículas.
Nos estudos dos gases utiliza-se a escala Kelvin (K), cuja fórmula de conversão em relação à temperatura em graus Celsius (C) é:

K = C+273 

PressãoÉ a força por unidade de área. No caso dos gases a pressão é resultante do movimento das partículas em choque com as paredes do recipiente que contém o gás. As unidades de medida para a pressão atmosférica medida ao nível do mar são:

Volume ocupado por um gásIgual ao volume do recipiente que o contém. As unidades são:
 

MolQuantidade de uma substância:
CNTP - condições normais de temperatura e pressão (273 K e 1 atm). Nessas condições 1 mol de gás ocupa 22,4 L (volume molar de gases).

Transformações gasosas 

Isotérmica
(temperatura constante); caso se diminua o volume do gás (diminuindo o volume do recipiente que o contém), a pressão aumenta:
 

 Isobárica (pressão constante); caso se aumente a temperatura o volume também aumenta:
 

 Isocórica ou Isovolumétrica (volume constante); ao se aumentar a temperatura a pressão também aumenta
 
Equação geral dos gases ideais: se as três propriedades (volume, pressão e temperatura) variarem, a equação será:

É chamado de gás ideal a todo gás que se comporta conforme as equações acima descritas. Na maioria das vezes os gases não se comportam como gases ideais, e são chamados de gases reais. Usam-se as equações acima, fazendo a adaptação para os casos de gases reais.


Equação de estado dos gases perfeitos Mesmo que haja transformações pode-se usar a equação geral dos gases a qualquer momento:
 

A equação acima relaciona o número de mols de um gás com a temperatura, pressão e volume; ou seja, dados, por exemplo, a pressão, o volume e a temperatura de um gás, é possível calcular quantos mols de gás estão presentes nesse volume.
  

Mistura de gases
Toda mistura de gases é um sistema homogêneo. A pressão final alcançada será a soma de todas as pressões parciais dos gases misturados. Por exemplo, caso misturemos 3 gases com pressões parciais de 1, 2 e 3 atm a pressão final será 6 atm.

Para mistura de n gases a equação será:

Por generalização:

Fração molar de cada um dos gases da mistura é a razão entre o número de mols desse gás e o número total de mols.

Fonte:http://guiadoestudante.abril.com.br/estudar/quimica/estudo-gases-676823.shtml

25 de jan. de 2013

Camada de Valência

http://www.vestibulandoweb.com.br/quimica/teoria/diagrama-linus-pauling.jpg 
Cada uma destas camadas possuem um número máximo de elétrons. Assim, as camadas acima possuem, respectivamente 2, 8, 18, 32, 32, 18 e 2 elétrons. A camada de valência necessita, na maior parte dos átomos, de 8 elétrons para que seja estável. Essa é a teoria do octeto.
Quando não há instabilidade, os átomos tendem a fazer ligações químicas com elementos que possam proporcionar os dois elétrons faltantes.
Os gases nobres possuem 8 elétrons em sua camada de valência, a única exceção é Hélio, que possui 2 elétrons na camada de valência. Todos são estáveis, não necessitando realizar ligações químicas para adquirir estabilidade.
Como exemplo das ligações ocorridas em razão dos átomos presentes na camada de valência, estão o Oxigênio, que possui 6 elétrons na última camada e o Hidrogênio, que possui 1 elétron na ultima camada. O Oxigênio necessita de dois elétrons para ficar estável e o Hidrogênio, de dois elétrons. Desta forma, ocorre uma ligação em que dois átomos de Hidrogênio compartilham cada um, 1 elétron com o Oxigênio. Assim, o Oxigênio adquire a estabilidade através dos dois elétrons compartilhados, assim como o Hidrogênio, que adquire dois elétrons na camada de valência. Essa é a ligação que ocorre formando moléculas de água.
Outro exemplo conhecido é o cloreto de sódio ou sal de cozinha. O Cloro possui 7 elétrons na camada de valência. O Sódio, por sua vez, possui um elétron na camada de valência. Assim, o Sódio se torna um cátion, pois perde um elétron, e o Cloro se torna um ânion, pois ganha um elétron.
A representação da tabela periódica permite que, através de uma breve análise, se conclua a respeito da quantidade de eletrons da última camada. Assim, os grupos 1, 2, 13, 14, 15, 16 e 17 possuem, respectivamente, 1, 2, 3, 4, 5, 6 e 7 elétrons na última camada. Além disso, para o restante dos elementos presentes na tabela periódica, é possível identificar o número de elétrons da camada de valência através da representação da distribuição eletrônica. Assim, tem-se a respeito do elemento Ferro:
Fe: nº atômico 26
Distribuição eletrônica: 1s2 2s2 2p6 3s2 3p6 4s2 3d6
A última camada representada: 4 (4s)
Assim, o elemento Ferro possui 2 elétrons (4s2) em sua camada de valência.
Assim como o elemento Prata:
Ag: nº atômico 47
Distribuição eletrônica: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d9
A última camada representada: 5
Assim, o elemento Prata possui 2 (5s2) elétrons em sua camada de valência.
Desta forma, é possível conhecer as ligações prováveis entre os diversos elementos, assim como a sua provável transformação em cátions e ânions.


Related Posts Plugin for WordPress, Blogger...