Mostrando postagens com marcador osmose. Mostrar todas as postagens
Mostrando postagens com marcador osmose. Mostrar todas as postagens
16 de dez. de 2013
6 de dez. de 2013
Crioscopia

Um importante capítulo da química e facilmente relacionável ao nosso cotidiano é aquele que aborda o que se denomina de Propriedades Coligativas,
ou seja, as alterações nas propriedades físicas de solventes pela
adição de solutos de natureza não iônica e não volátil, constituindo-se
assim uma solução verdadeira.
São quatro as propriedades coligativas abordadas na maioria dos livros didáticos de química: a tonoscopia, a crioscopia, a ebulioscopia e a osmose (juntamente com a osmose reversa). Este texto tem finalidade de apresentar e esclarecer algumas propriedades da CRIOSCOPIA.
Como definição, a crioscopia ou o abaixamento crioscópico
representa a redução do ponto de congelamento de uma solução pela
adição de um soluto de natureza não iônica e não volátil. Nesse processo, torna-se possível medir a massa molar do soluto adicionado, desde que se conheça a constante crioscópica do solvente, ou vice-versa.
Assim como ocorre às demais propriedades coligativas, não causa
diferença no abaixamento do ponto de congelamento de uma solução
(crioscopia) a natureza do soluto adicionado, mas apenas sua quantidade
em mols ou partículas. Dessa forma, por exemplo, uma solução de
concentração a 1 mol/L de glicose (C6H12O6)
apresentará mesmo efeito crioscópico de qualquer solução de diferente
soluto (não iônico), quando esta segunda solução estiver em mesma
concentração da primeira.
A interpretação e o estudo físico-químico da crioscopia são realizados a partir das fundamentações da Lei de Raoult,
que estabelece que a diferença existente entre a temperatura de
solidificação de um solvente puro e a temperatura de início de
congelamento desse solvente quando constituinte de uma solução é
diretamente proporcional à concentração molar do soluto na solução.
Dessa forma, a variação crioscópica (Δc) é aumentada à medida que
aumenta a concentração da solução.
Alguns efeitos podem ser observados da crioscopia em nosso dia a dia, tais como:
- A temperatura de congelamento da água poluída é mais baixa do que o da água pura, pois nela estão presentes substâncias que a tornam uma solução, reduzindo assim o seu ponto de congelamento.
- A água do mar (salgada) apresenta um ponto de congelamento inferior à água doce, dessa forma, são necessárias temperaturas muito inferiores para congelar uma amostra de água salgada do que aquelas necessárias para congelar uma amostra de água doce.
- Um iceberg é composto por água doce, uma vez que a temperatura não é baixa o suficiente para congelar a água salgada.
- Se utiliza sal (geralmente cloreto de sódio) para reduzir a temperatura de congelamento da água a assim fundi-la em avenidas cobertas de gelo, procedimento esse comum em cidades nas quais o inverno é muito intenso.
Marcadores:
assunto,
assuntos,
crioscopia,
ebulioscopia,
explicações,
Lei de Raoult,
osmose,
propriedades coligativas
4 de abr. de 2013
Dessalinização da Água
Dessalinização é um processo físico-químico de retirada de sais da água, tornando-a doce e própria para o consumo.
Como se sabe, a notícia de que pode faltar água potável no planeta é tenebrosa ao homem, já existem regiões ameaçadas, as Ilhas são exemplos: Ilha de Chipre, Ilha de Páscoa, Ilha Fernando de Noronha, onde os lençóis freáticos diminuíram em razão da exploração. Em alguns países, como a Arábia Saudita e Israel, este já é um problema.
Então por que não transformar água salgada presente em abundância nestes locais em água doce? Esta é a ideia que pode solucionar este problema ambiental, vejamos os possíveis processos para a dessalinização da água:
Evaporação: a água salgada é colocada em um tanque com fundo preto e teto de vidro transparente, este tanque permite que o calor do sol evapore a água.
Observe a figura que ilustra o processo descrito acima:
Como se sabe, a notícia de que pode faltar água potável no planeta é tenebrosa ao homem, já existem regiões ameaçadas, as Ilhas são exemplos: Ilha de Chipre, Ilha de Páscoa, Ilha Fernando de Noronha, onde os lençóis freáticos diminuíram em razão da exploração. Em alguns países, como a Arábia Saudita e Israel, este já é um problema.
Então por que não transformar água salgada presente em abundância nestes locais em água doce? Esta é a ideia que pode solucionar este problema ambiental, vejamos os possíveis processos para a dessalinização da água:
Evaporação: a água salgada é colocada em um tanque com fundo preto e teto de vidro transparente, este tanque permite que o calor do sol evapore a água.
Observe a figura que ilustra o processo descrito acima:

1. A água salgada é retirada do mar e transferida para o tanque 1 (setas vermelhas);
2. A luz solar incidente (parte superior do tanque: indicada pelas setas brancas), faz com que a água salgada se evapore;
3. O vapor de água passa por um resfriamento e se converte em líquido por condensação: o processo é representado pelas setas amarelas. O produto líquido é a água já no estado puro, esta é recolhida por canaletas e então armazenada no tanque 2.
O processo é simples e barato, o grande problema é que os tanques ocupam extensas áreas e estas precisam receber iluminação solar satisfatória para que a evaporação ocorra com sucesso.
Osmose reversa:
Também conhecida como Osmose Inversa, é onde se exerce forte pressão em uma solução salina. Como o próprio nome já diz, esse processo é o inverso da osmose natural (passagem de uma substância pura para uma solução através de uma membrana semipermeável). Só que para dessalinizar a água é preciso que esta passagem ocorra inversamente: da solução (água e sal) para água pura. Não entendeu? É fácil! O processo consiste em realizar a passagem da água salgada por membranas de fibra oca. Estas fibras contêm poros microscópicos e todo o sal e impurezas presentes na água ficam retidas nestes pequenos poros.
Repare que, ao contrário da osmose comum, a reversa consiste na transferência de uma solução salgada para uma purificada. Este método é o que apresenta perspectivas para a solução da água, atualmente já existem usinas operantes no Golfo Pérsico, Espanha, Malta, Austrália e Caribe convertendo 4,8 bilhões de metros cúbicos de água salgada em água doce, por ano.
2. A luz solar incidente (parte superior do tanque: indicada pelas setas brancas), faz com que a água salgada se evapore;
3. O vapor de água passa por um resfriamento e se converte em líquido por condensação: o processo é representado pelas setas amarelas. O produto líquido é a água já no estado puro, esta é recolhida por canaletas e então armazenada no tanque 2.
O processo é simples e barato, o grande problema é que os tanques ocupam extensas áreas e estas precisam receber iluminação solar satisfatória para que a evaporação ocorra com sucesso.
Osmose reversa:
Também conhecida como Osmose Inversa, é onde se exerce forte pressão em uma solução salina. Como o próprio nome já diz, esse processo é o inverso da osmose natural (passagem de uma substância pura para uma solução através de uma membrana semipermeável). Só que para dessalinizar a água é preciso que esta passagem ocorra inversamente: da solução (água e sal) para água pura. Não entendeu? É fácil! O processo consiste em realizar a passagem da água salgada por membranas de fibra oca. Estas fibras contêm poros microscópicos e todo o sal e impurezas presentes na água ficam retidas nestes pequenos poros.
Repare que, ao contrário da osmose comum, a reversa consiste na transferência de uma solução salgada para uma purificada. Este método é o que apresenta perspectivas para a solução da água, atualmente já existem usinas operantes no Golfo Pérsico, Espanha, Malta, Austrália e Caribe convertendo 4,8 bilhões de metros cúbicos de água salgada em água doce, por ano.
Marcadores:
água,
assunto,
assuntos,
dessalinização,
evaporação,
explicações,
fisico-quimica,
osmose,
quimica ambiental
2 de abr. de 2013
Hipertônico e Hipotônico
Em fenômenos de difusão, quando um soluto é transportado por um fluido
líquido ou gasoso de um meio mais concentrado para um menos concentrado,
ou osmose (quando o fluido envolvido é a água), os termos hipertônico e hipotônico são definidores da análise de movimento e sentido das partículas quando separadas de um meio com concentração diferente.
Um meio hipertônico é justamente aquele que apresenta
concentração de um soluto maior em relação a outro meio. Este, por sua
vez, é hipotônico em relação ao primeiro. Assim, essas classificações só
podem ser empregadas em sentido de comparação e não como definição primária da característica osmótica de uma solução.
Exemplos:
1) Num caso extremo, ao por sal doméstico em algumas folhas de
alface, pode-se perceber que após algum tempo as mesmas estão murchas.
Isso se deve ao fato da água presente nas folhas fluírem para dissolver o
sal adicionado: portanto, o sal agiria como um meio hipertônico em
relação às folhas de alface; enquanto que as mesmas como um meio
hipotônico.
Vale ressaltar que a classificação do sal como uma solução altamente
concentrada não se aplica, já que se encontra em estado sólido. A
classificação como meio assume posição mais aceitável.
2) Uma hemácia
(célula que constitui o sangue) encontra-se em estado túrgido quando é
posta em um meio hipotônico em relação a ela. Desse modo, o fluxo de
água é de fora para dentro (contrário ao fluxo presente no exemplo
acima) e corre o risco de a hemácia se romper (hemólise).
3) Caso a célula em questão fosse de um vegetal, por haver
parede celular suficientemente resistente, esta iria apenas apresentar
turgidez ou plasmólise (quando inserida num meio hipertônico).
A osmose reversa,
como o próprio nome sugere, ocorre quando um solvente é retirado de um
soluto através de uma pressão fornecida (contrariando o gradiente de
concentração – o princípio de existência da difusão em geral). Assim,
faz-se uso de uma membrana permeável apenas pelo solvente.
Alguns exemplos de osmose reversa são:
- Dessalinização da água do mar (embora outros métodos possam ser empregados para a separação);
- Desmineralização de água para produção de fármacos e emprego em procedimentos clínicos (como a hemodiálise);
Essa técnica torna-se mais viável técnica e economicamente quando os
solutos são de baixa massa molecular. Uma vez que a pressão fornecida é
relativamente elevada e o processo pode ser muito lento.
Marcadores:
assunto,
assuntos,
aula,
aulas,
explicações,
hipertônico,
Hipertônico e Hipotônico,
hipotônico,
osmose
3 de jan. de 2013
Propriedades Coligativas #2
Pressão Máxima de Vapor (PMV)
PMV é a pressão exercida pelo vapor quando está em equilíbrio dinâmico com o liquido correspondente.
A PMV depende da temperatura e da natureza do líquido. Observa-se experimentalmente que, numa mesma temperatura, cada líquido apresenta sua pressão de vapor, pois esta está relacionada com a volatilidade do líquido.
Vejamos alguns exemplos no gráfico abaixo:

Ponto de ebulição é a temperatura na qual a PMV iguala a pressão atmosférica. Quanto maior a PMV na temperatura ambiente, menor o P.E.
amos então estudar cada um dos efeitos coligativos.
Tonometria ou tonoscopia ou abaixamento da PMV do solvente
Tonoscopia é o estudo do abaixamento da pressão máxima de vapor de um solvente, provocado pela dissolução de um soluto não-volátil.
p = PMV do solvente puro.
p’ = PMV do solvente na solução.
p > p’
O abaixamento da PMV é: ∆p = p – p’
∆p depende da temperatura.
Abaixamento Relativo da PMV do Solvente:
∆p/p = p – p’/p
∆p/p independe da temperatura.
Cálculo do ∆p/p = Kt . W (Lei de Raoult) e Fator de Vant’Hoff (i):
Para soluções moleculares, temos:
∆p/p = Kt . W
onde Kt (Kt = Massa Molarsolvente/1000) é a constante tonométrica e característica de cada solvente e W ( W = n1/msolvente(kg)) é a molalidade da solução.
Para soluções iônicas, temos:
∆p/p = Kt . W . i
onde i é a relação:
i = 1 + α(q – 1)
onde:
α = grau de ionização (0 ≤ α ≤ 1).
q = número de íons por fórmula de soluto:
Exemplo → NaCl(s) → 1Na+ + 1Cl- q = 2
Na2SO4(s) → 2Na+ + 1SO42- q = 3
Crioscopia ou Criometria ou Abaixamento do Ponto de Congelação do Solvente
A criometria é o estudo do abaixamento da temperatura de solidificação de um solvente, provocado pela adição de um soluto não-volátil, à pressão externa constante.
tc = temperatura de congelação do solvente puro.
t’c = temperatura de congelação do solvente na solução.
tc > t’c
O abaixamento será: ∆tc = tc – t’c
Cálculo de ∆tc (Lei de Raoult):
Para soluções moleculares, temos:
∆tc = Kc . W
sendo Kc = R .T2/100 . L , onde:
R = constante = 1,98 cal/mol. K;
L = calor latente de fusão do solvente (cal/g);
T = ponto de fusão do solvente em Kelvin.
Para soluções iônicas, temos:
∆tc = Kc . W . i
sendo i = 1 + α(q – 1).
Ebuiliometria ou Ebulioscopia ou Elevação do Ponto de Ebulição do Solvente
Ebulioscopia é o estudo da elevação do ponto de ebulição de um solvente, provocada pela adição de um soluto não-volátil, à pressão externa constante.
te = temperatura do P.E. do solvente puro.
t’e = temperatura do P.E. do solvente na solução.
t’e > te
A elevação será: ∆te = t’e – te
Cálculo de ∆te (Lei de Raoult)
Para soluções moleculares, temos:
∆te = Ke . W
sendo Ke = Kc
Para soluções iônicas, temos:
∆te = Ke . W . i
sendo i = 1 + α(q – 1).
Osmose e Pressão Osmótica
Osmose é passagem de um solvente para o interior de uma solução feita desse mesmo solvente, através de uma membrana semipermeável. A osmose é também uma propriedade coligativa das soluções, pois depende do número de partículas dissolvidas
Tipos de membranas:
Permeáveis: são aquelas que permitem a passagem tanto do solvente como do soluto.
Semipermeáveis: são aquelas que permitem apenas a passagem do solvente.
Impermeáveis: são aquelas que não permitem a passagem de soluto e solvente.
O fluxo de solvente ocorre da solução mais diluída para a solução mais concentrada
Pressão Osmótica
Pressão osmótica é a pressão que se deveria aplicar sobre a solução, a determinada temperatura, para impedir a passagem do solvente através da membrana. A pressão osmótica é representada pela letra grega π (Pi).
π = pressão osmótica.
M = concentração em mol/L.
Para soluções moleculares, temos:
π = M.R.T
Para soluções iônicas, temos:
π = M.R.T.i
As soluções que apresentam mesma pressão osmótica denominam-se isotônicas. Em caso contrário, anisotônicas; a de maior pressão osmótica hipertônica; e a de menor pressão osmótica, hipotônica.
Exemplo: a água do mar é hipertônica em relação à água potável.
Fonte: http://www.infoescola.com/quimica/propriedades-coligativas/
PMV é a pressão exercida pelo vapor quando está em equilíbrio dinâmico com o liquido correspondente.
A PMV depende da temperatura e da natureza do líquido. Observa-se experimentalmente que, numa mesma temperatura, cada líquido apresenta sua pressão de vapor, pois esta está relacionada com a volatilidade do líquido.
Vejamos alguns exemplos no gráfico abaixo:

Ponto de ebulição é a temperatura na qual a PMV iguala a pressão atmosférica. Quanto maior a PMV na temperatura ambiente, menor o P.E.
amos então estudar cada um dos efeitos coligativos.
Tonometria ou tonoscopia ou abaixamento da PMV do solvente
Tonoscopia é o estudo do abaixamento da pressão máxima de vapor de um solvente, provocado pela dissolução de um soluto não-volátil.
p = PMV do solvente puro.
p’ = PMV do solvente na solução.
p > p’
O abaixamento da PMV é: ∆p = p – p’
∆p depende da temperatura.
Abaixamento Relativo da PMV do Solvente:
∆p/p = p – p’/p
∆p/p independe da temperatura.
Cálculo do ∆p/p = Kt . W (Lei de Raoult) e Fator de Vant’Hoff (i):
Para soluções moleculares, temos:
∆p/p = Kt . W
onde Kt (Kt = Massa Molarsolvente/1000) é a constante tonométrica e característica de cada solvente e W ( W = n1/msolvente(kg)) é a molalidade da solução.
Para soluções iônicas, temos:
∆p/p = Kt . W . i
onde i é a relação:
i = 1 + α(q – 1)
onde:
α = grau de ionização (0 ≤ α ≤ 1).
q = número de íons por fórmula de soluto:
Exemplo → NaCl(s) → 1Na+ + 1Cl- q = 2
Na2SO4(s) → 2Na+ + 1SO42- q = 3
Crioscopia ou Criometria ou Abaixamento do Ponto de Congelação do Solvente
A criometria é o estudo do abaixamento da temperatura de solidificação de um solvente, provocado pela adição de um soluto não-volátil, à pressão externa constante.
tc = temperatura de congelação do solvente puro.
t’c = temperatura de congelação do solvente na solução.
tc > t’c
O abaixamento será: ∆tc = tc – t’c
Cálculo de ∆tc (Lei de Raoult):
Para soluções moleculares, temos:
∆tc = Kc . W
sendo Kc = R .T2/100 . L , onde:
R = constante = 1,98 cal/mol. K;
L = calor latente de fusão do solvente (cal/g);
T = ponto de fusão do solvente em Kelvin.
Para soluções iônicas, temos:
∆tc = Kc . W . i
sendo i = 1 + α(q – 1).
Ebuiliometria ou Ebulioscopia ou Elevação do Ponto de Ebulição do Solvente
Ebulioscopia é o estudo da elevação do ponto de ebulição de um solvente, provocada pela adição de um soluto não-volátil, à pressão externa constante.
te = temperatura do P.E. do solvente puro.
t’e = temperatura do P.E. do solvente na solução.
t’e > te
A elevação será: ∆te = t’e – te
Cálculo de ∆te (Lei de Raoult)
Para soluções moleculares, temos:
∆te = Ke . W
sendo Ke = Kc
Para soluções iônicas, temos:
∆te = Ke . W . i
sendo i = 1 + α(q – 1).
Osmose e Pressão Osmótica
Osmose é passagem de um solvente para o interior de uma solução feita desse mesmo solvente, através de uma membrana semipermeável. A osmose é também uma propriedade coligativa das soluções, pois depende do número de partículas dissolvidas
Tipos de membranas:
Permeáveis: são aquelas que permitem a passagem tanto do solvente como do soluto.
Semipermeáveis: são aquelas que permitem apenas a passagem do solvente.
Impermeáveis: são aquelas que não permitem a passagem de soluto e solvente.
O fluxo de solvente ocorre da solução mais diluída para a solução mais concentrada
Pressão Osmótica
Pressão osmótica é a pressão que se deveria aplicar sobre a solução, a determinada temperatura, para impedir a passagem do solvente através da membrana. A pressão osmótica é representada pela letra grega π (Pi).
π = pressão osmótica.
M = concentração em mol/L.
Para soluções moleculares, temos:
π = M.R.T
Para soluções iônicas, temos:
π = M.R.T.i
As soluções que apresentam mesma pressão osmótica denominam-se isotônicas. Em caso contrário, anisotônicas; a de maior pressão osmótica hipertônica; e a de menor pressão osmótica, hipotônica.
Exemplo: a água do mar é hipertônica em relação à água potável.
Fonte: http://www.infoescola.com/quimica/propriedades-coligativas/
Assinar:
Postagens (Atom)